home *** CD-ROM | disk | FTP | other *** search
-
-
-
- ZZZZUUUUNNNNMMMMTTTTRRRR((((3333SSSS)))) ZZZZUUUUNNNNMMMMTTTTRRRR((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- ZUNMTR - overwrite the general complex M-by-N matrix C with SIDE = 'L'
- SIDE = 'R' TRANS = 'N'
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE ZUNMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
- LWORK, INFO )
-
- CHARACTER SIDE, TRANS, UPLO
-
- INTEGER INFO, LDA, LDC, LWORK, M, N
-
- COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- ZUNMTR overwrites the general complex M-by-N matrix C with SIDE = 'L'
- SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C *
- Q**H
-
- where Q is a complex unitary matrix of order nq, with nq = m if SIDE =
- 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1
- elementary reflectors, as returned by ZHETRD:
-
- if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
-
- if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**H from the Left;
- = 'R': apply Q or Q**H from the Right.
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A contains elementary reflectors from
- ZHETRD; = 'L': Lower triangle of A contains elementary reflectors
- from ZHETRD.
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- ZZZZUUUUNNNNMMMMTTTTRRRR((((3333SSSS)))) ZZZZUUUUNNNNMMMMTTTTRRRR((((3333SSSS))))
-
-
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'C': Conjugate transpose, apply Q**H.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- A (input) COMPLEX*16 array, dimension
- (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which
- define the elementary reflectors, as returned by ZHETRD.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M) if SIDE =
- 'L'; LDA >= max(1,N) if SIDE = 'R'.
-
- TAU (input) COMPLEX*16 array, dimension
- (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the
- scalar factor of the elementary reflector H(i), as returned by
- ZHETRD.
-
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C
- or Q**H*C or C*Q**H or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. If SIDE = 'L', LWORK >=
- max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum
- performance LWORK >= N*NB if SIDE = 'L', and LWORK >=M*NB if SIDE
- = 'R', where NB is the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns this
- value as the first entry of the WORK array, and no error message
- related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- ZZZZUUUUNNNNMMMMTTTTRRRR((((3333SSSS)))) ZZZZUUUUNNNNMMMMTTTTRRRR((((3333SSSS))))
-
-
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-